

Welcome to Compass Aligned Distributional Embeddings’s documentation!

Contents:

	Compass-aligned Distributional Embeddings
	Reference

	Abstract

	What’s this About?

	Installing

	Guide

	How To Use

	People

	Credits

	Installation
	Stable release

	From sources

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2019-09-11)

Indices and tables

	Index

	Module Index

	Search Page

Compass-aligned Distributional Embeddings

[image: _images/cade.svg]
 [https://pypi.python.org/pypi/cade][image: _images/cade1.svg]
 [https://travis-ci.com/vinid/cade]This package contains Python code to generate compass aligned distributional embeddings.
Comparing word vectors in different corpora requires alignment.
We propose a method to aligned distributional representation based on word2vec.
This method is efficient and it is based on a simple heuristic: we train a general word embedding, the compass
and we use this embedding to freeze one of the layers of the CBOW architecture.

See the AAAI [https://aaai.org/ojs/index.php/AAAI/article/view/4594] and Arxiv pre-print [https://arxiv.org/abs/2004.06519] papers for more details.

[image: _images/CADE.png]

Reference

This work is based on the following papers: AAAI [https://aaai.org/ojs/index.php/AAAI/article/view/4594] and Arxiv-preprint [https://arxiv.org/abs/2004.06519]

	Bianchi, F., Di Carlo, V., Nicoli, P., & Palmonari, M. (2020). Compass-aligned Distributional Embeddings for Studying Semantic Differences across Corpora. Arxiv. https://arxiv.org/abs/2004.06519

	Di Carlo, V., Bianchi, F., & Palmonari, M. (2019). Training Temporal Word Embeddings with a Compass. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 6326-6334. https://doi.org/10.1609/aaai.v33i01.33016326

Abstract

Word2vec is one of the most used algorithms to generate word embeddings because of a good mix of efficiency, quality of the generated representations and cognitive grounding. However, word meaning is not static and depends on the context in which words are used. Differences in word meaning that depends on time, location, topic, and other factors, can be studied by analyzing embeddings generated from different corpora in collections that are representative of these factors. For example, language evolution can be studied using a collection of news articles published in different time periods. In this paper, we present a general framework to support cross-corpora language studies with word embeddings, where embeddings generated from different corpora can be compared to find correspondences and differences in meaning across the corpora. CADE is the core component of our framework and solves the key problem of aligning the embeddings generated from different corpora. In particular, we focus on providing solid evidence about the effectiveness, generality, and robustness of CADE. To this end, we conduct quantitative and qualitative experiments in different domains, from temporal word embeddings to language localization and topical analysis. The results of our experiments suggest that CADE achieves state-of-the-art or superior performance on tasks where several competing approaches are available, yet providing a general method that can be used in a variety of domains. Finally, our experiments shed light on the conditions under which the alignment is reliable, which substantially depends on the degree of cross-corpora vocabulary overlap.

What’s this About?

Different words assume different meaning in different contexts. Think for example of how people once used the word amazon to mainly
refer to the forest. Or think about the differences between American and British English. This is what we usually call meaning shift.
See some examples of meaning shifts:

[image: _images/shift_meaning.png]
Why not using standard word embeddings? Well, long story short, different embeddings generated from different
corpora are not comparable: they need to be aligned!

With CADE we provide a method to align different corpora (in the same language) and to compare them.
Alignment allow us to compare different word embeddings in different corpora using cosine similarity!

Here are some example of mappings between text about Pokemons (from the Reddit board) and text about
Scientific stuff (again, Reddit) that you can learn with CADE.

For example, you can take the vector of the word Arceus, from the Pokemon corpus and find that it is very similar to the
word god in the Science corpus. You wonder why? Arceus is the good of Pokemons! See some examples of mapping like this in the table, where we show
the top-5 nearest neighbors of the mapped space!

[image: _images/mappings.png]

Installing

We use a custom/edited implementation of gensim, this WILL clash with your gensim installation, consider installing this inside a virtual environment

pip install -U cade

REMEMBER TO USE A VIRTUAL ENVIRONMENT

pip install git+https://github.com/valedica/gensim.git

Guide

	Remember: when you call the training method of CADE the class creates a “model/” folder where it is going to save the trained objects. The compass will be trained as first element and it will be saved in that folder. If you want to overwrite it remember to set the parameter overwrite=True, otherwise it will reload the already trained compass.

	What do you need: Different corpora you want to compare (i.e., text from 1991, text from 1992 / text from the New York Times, text from The Guardian … etc…) and the concatenation of those text slices (the compass).

	The compass should be the concatenation of the slice you want to align. In the next code section you will see that we are going to use arxiv papers text from two different years. The “compass.txt” file contains the concatenation of both slices.

How To Use

	Training

Suppose you have corpora you want to compare text “arxiv_14.txt” and “arxiv_9.txt”. First of all, create the concatenation
of these two and create a “compass.txt” file. Now you can train the compass.

from cade.cade import CADE
from gensim.models.word2vec import Word2Vec
aligner = CADE(size=30)

train the compass: the text should be the concatenation of the text from the slices
aligner.train_compass("examples/training/compass.txt", overwrite=False) # keep an eye on the overwrite behaviour

You can see that the class covers the same parameters the Gensim word2vec library has. After this first training you can train the slices:

now you can train slices and they will be already aligned
these are gensim word2vec objects
slice_one = aligner.train_slice("examples/training/arxiv_14.txt", save=True)
slice_two = aligner.train_slice("examples/training/arxiv_9.txt", save=True)

These two slices are now aligned and can be compared!

	Load Data

You can load data has you do with gensim.

model1 = Word2Vec.load("model/arxiv_14.model")
model2 = Word2Vec.load("model/arxiv_9.model")

and you can start comparing it with standard methods

from scipy.spatial.distance import cosine
print(1 - cosine(model1["like"], model["sign"]))

People

	Federico Bianchi - Bocconi University - (f.bianchi@unibocconi.it)

	Valerio Di Carlo - BUP Solutions

	Paolo Nicoli - University of Milano-Bicocca

	Matteo Palmonari - University of Milano-Bicocca - (matteo.palmonari@unimib.it)

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install Compass-aligned Distributional Embeddings, run this command in your terminal:

$ pip install cade

This is the preferred method to install Compass-aligned Distributional Embeddings, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Compass-aligned Distributional Embeddings can be downloaded from the Github repo [https://github.com/vinid/cade].

You can either clone the public repository:

$ git clone git://github.com/vinid/cade

Or download the tarball [https://github.com/vinid/cade/tarball/master]:

$ curl -OJL https://github.com/vinid/cade/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Compass-aligned Distributional Embeddings in a project:

import cade

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/vinid/cade/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Compass-aligned Distributional Embeddings could always use more documentation, whether as part of the
official Compass-aligned Distributional Embeddings docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/vinid/cade/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up cade for local development.

	Fork the cade repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/cade.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv cade
$ cd cade/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 cade tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.5, 3.6 and 3.7, and for PyPy. Check
https://travis-ci.org/vinid/cade/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_cade

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Federico Bianchi <f.bianchi@unibocconi.it.it>

Contributors

None yet. Why not be the first?

History

0.1.0 (2019-09-11)

	First release on PyPI.

Index

 _images/shift_meaning.png
gas

. gasoline

engine
s
poucs petrol .,
engine
Linguistic Shift

American English and
British English

happy

nice 98Y cheerful good

happiness
people

sexuality

gay LGeT

homosexual

Temporal Shift
From the 50' to the last
decade

cool
sick areat

freaking

vis - sick

Cultural Shif
Millennials and baby
boomers

bad

_static/ajax-loader.gif

_images/mappings.png
Mapping Word Top-5
SCI —- POK move 'walk’, ’go’, ’hop’, ‘sit’, ‘rotate’
POK move ‘tm’, ‘moves’, ‘moven’, ‘superpower’, ’attacks’
POK — SCI arceus ‘gods’, ’sakes’, 'worship’, ‘creator’, ‘god’
POK arceus ‘mew’, ‘deoxys’, ‘giratina’, ‘celebi’; 'regigigas’
SCI — POK ash ‘lava’, ‘moisture’, ‘air’, ‘ocean’, ‘clouds’
POK ash ‘brock’, ‘misty’, ‘serena’, ‘giovanni’, ‘gary’

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_images/CADE.png
. 1) Train the
N D2 N D' compass from the
concatenation
00000

3) training 3) training 3) training 3) training 3) training

2) Initialize and freeze
each CBOW target matrix
with the same U matrix

c1 c2 c3 o0 0000 cl o0 0000 c"

nav.xhtml

 Table of Contents

 		
 Welcome to Compass Aligned Distributional Embeddings’s documentation!

 		
 Compass-aligned Distributional Embeddings

 		
 Reference

 		
 Abstract

 		
 What’s this About?

 		
 Installing

 		
 Guide

 		
 How To Use

 		
 People

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2019-09-11)

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

